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We investigate a reversible percolation system showing unipolar resistance switching in which

percolating paths are created and broken alternately by the application of an electric bias. Owing to

the dynamical changes in the percolating paths, different from those in classical percolating paths, a

detailed understanding of the structure is demanding and challenging. Here, we develop a scaling theory

that can explain the transport properties of these conducting paths; the theory is based on the fractal

geometry of a percolating cluster. This theory predicts that two scaling behaviors emerge, depending on

the topologies of the conducting paths. We confirm these theoretical predictions experimentally by

observing material-independent universal scaling behaviors in unipolar resistance switching.
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During the dielectric breakdown of an insulating me-
dium, conducting paths with a fractal pattern are instanta-
neously formed [1–4]. Interestingly, in numerous thin
insulating media positioned between top and bottom elec-
trodes, as shown in Fig. 1(a), a well-controlled dielectric
breakdown can lead to the formation of nanoscale con-
ducting paths or filaments [5–11]. These paths can be
ruptured and reconnected alternately through a dielectric
breakdown [11] and the thermal fuse effect [9,12–14],
respectively, by successively applying an electric bias.
This nonvolatile resistance change, called unipolar resist-
ance switching, has potential importance for next-
generation memory devices.

To explain the switching dynamics, a dynamic bond-
percolation model, called the random circuit breaker
(RCB) network model [8,12], has been introduced. In this
model, an initial insulating configuration is mostly com-
posed of off-state (insulating) bonds, with a few on-state
(conducting) bonds, as shown in Fig. 1(b). Conducting
paths are then created [Fig. 1(c)] via a dielectric break-
down; off ! on switching occurs when the applied voltage
of an off-state bond is larger than some threshold Vc, as in
Fig. 1(d). These percolating paths can break via the thermal
fuse effect triggered by Joule heating. When the tempera-
ture of on-state bonds exceeds some threshold Tc, the
hottest (on-state) bonds located in the bottleneck of the
entire paths are burnt and transformed into off-state bonds,
as shown in Fig. 1(e), which results in the rupturing of
paths [Fig. 1(f)].

While numerical results based on this RCB model have
been successful in explaining experimental results qualita-
tively [8,12], the scaling relations [15] observed experi-
mentally for a single material NiO between the resistance,
the third harmonic generation signal, and the rupture cur-
rent have not been explained yet. It is manifest that such

physical quantities depend on topological features of per-
colating paths created through alternating dielectric break-
down and rupture processes, which are different from those
of the classical percolation model created through random
processes. Nevertheless, the topology of the percolating
paths in the RCB model has not been studied yet. In this
Letter, first we study structural properties of the percolat-
ing paths, and then develop a scaling theory, which suc-
cessfully explains the scaling relations experimentally

FIG. 1 (color online). (a) Schematic of an electrode-oxide-
electrode structure. (b) Initial configuration of an insulating
medium with a few on-state bonds as defects. (c) Snapshot of
percolating (highly conducting) paths created via the dielectric
breakdown process. (d) The off ! on switching by a dielectric
breakdown, which occurs when the applied voltage exceeds
some threshold voltage Vc. (e) The on ! off switching by the
thermal fuse effect, which occurs when the temperature of a
bond exceeds some threshold temperature Tc because of Joule
heating. (f) Snapshot of disconnected paths ruptured by the
thermal fuse effect.
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observed. Finally, we conduct the unipolar resistance
switching experiments for several different materials, and
confirm universal scaling behaviors.

Let us first investigate the topological feature of the
paths. It has been found theoretically and experimentally
that the structure of conducting paths created via this
dielectric breakdown process is different from simple
integer-dimensional shapes such as a cylinder or a
cone, as assumed in a recent study [11], and has a fractal
geometry that spans the space with noninteger dimensions
Df [1–4]. The total length Lt of all branches inside a circle

of radius t from the center of the two-dimensional dis-
charged pattern scales in the form Lt � tDf [2]. Thus,
nt � dLt=dt� tDf�1 and �t � nt=2�t� tDf�2, where nt
is the number of branches and �t is the density of the
branches at a given distance t from the center. Analogous
to the two-dimensional case, the three-dimensional dis-
charged pattern is also a fractal, and it shows scaling
behaviors identical to those of the two-dimensional case,
except for the density �t � nt=t

2 � tDf�3, since the cross
section is proportional to the square of the distance in three
dimensions.

Now, we consider the three-dimensional conducting
filament as shown in Fig. 2(a), which is a schematic
illustration of three-dimensional effective conducting
paths created via a dielectric breakdown; the paths extend
from the top surface to the bottom surface of the insulating
medium. They have treelike structures. We note that even
though there exist horizontal bonds connecting branches
within actual percolating paths, the current flowing across
them is too small to contribute to the second and fourth
moments of the current distribution. Thus, it appears to be
reasonable to consider the conducting paths as effective
branching trees. Now, we slice up the medium horizon-
tally by considering a unit lattice constant �t as shown in
Figs. 2(a) and 2(b), where t is the depth or slice index from
the top, nt is the number of conducting branch segments
passing through the slice t, and st is the lateral size of the
spot area in slice t. With these definitions, we can define

the branch segment density at slice t as �t � nt=s
2
t . The

experimental fact [6,7] that multiple conducting states are
generally observed during the filament rupturing process
strongly implies the existence of more than one path in
a bottleneck, which is located at t ¼ 0 in our model, of
a conducting filament. Therefore, nt must be nonzero at
t ¼ 0. On the basis of this fact, we rewrite the scaling
relations of nt and �t for the three-dimensional conducting
paths as nt � ðc0 þ tÞDf�1 and �t � ðc0 þ tÞDf�3, where c0
is positive; c0 is introduced to make n0 nonzero at t ¼ 0.

Note that c0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n0=�0

p � s0, where s0 is the lateral dimen-
sion of the bottleneck. Therefore, we can use s0 instead of
c0 for the derivation of scaling relations. Thus, we obtain
nt � ðs0 þ tÞDf�1 and �t � ðs0 þ tÞDf�3.
Next, we consider two theoretical quantities, the second

(M2) and the fourth (M4) moments of the current distribu-
tion. They are related to the experimentally measurable
quantities, resistance of the filament R0 [15] and the third
harmonic generation signal B3f [16,17], respectively, as

R0 ¼ RM2 ¼ R
X
k

�
ik
Itot

�
2
; (1)

B3f ¼ BM4 ¼ B
X
k

�
ik
Itot

�
4
; (2)

where the index k denotes the conducting bond, Itot is the
total current passing through the entire network, and R
and B are the material-dependent coefficients. Then M2

and M4 are theoretically measurable quantities related to
the geometry of the conducting paths. To calculate these
moments, we approximate the current of each bond of nt
branches [18] in slice t as [Fig. 2(c)] i1 � i2 � � � � �
int � Itot=nt. M2, or the resistance, is then given by

R0 /
X
t¼0

�
1

nt

�
2
nt ¼

X
t¼0

1

ðs0 þ tÞDf�1
:

The upper and lower limits for the summation above areR
N
0 dt=ðs0 þ tÞD < R0 <

R
N
0 dt=ðs0 þ tÞD þ 1=sD0 , where

D ¼ Df � 1. If s0 is sufficiently large so that 1=sD0 can

be ignored, then R0 �
R
dt=ðs0 þ tÞD � 1=sD�1

0 . Here we

note that for this integration, we need the condition Df >

2, which is fulfilled by the Df value later. However, if s0 is

very small, the first term of the summation becomes domi-

nant, so R0 � 1=sD0 . In short,

R0 �
(
s
�Dfþ1

0 for small s0

s
�Dfþ2

0 for large s0:
(3)

In the same manner, we obtain M4 or B3f:

B3f /
X
t¼0

�
1

nt

�
4
nt �

(
s
�3Dfþ3

0 for small s0

s
�3Dfþ4

0 for large s0:
(4)

FIG. 2 (color online). (a) Branching tree structure of conduct-
ing paths generated by a dielectric breakdown; the paths extend
from the top to the bottom. At the cross section at depth t,
conducting spots are distributed in a region with lateral size st.
(b) Slice structure of an insulating medium with thickness �t.
There are nt conducting branch segments in slice t. (c) Total
current Itot distributed among all branch segments in a slice.
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We introduce one more quantity, the rupture current IR;
this is the maximum current right before the rupture
occurs. The rupture takes place at the hottest bond, which
is located at the bottleneck in the slice t ¼ 0 in Fig. 2(a). If
we define iR as the threshold current required to raise the
temperature of the hottest bond up to Tc to break the bond,

IR is given by IR � iRn0 � iRs
Df�1

0 .

Now, we explicitly take into account the manner in
which the shape of the conducting paths can affect the
Joule heating and rupturing process or iR; this is achieved
by using the finite element method (FEM) for simulations.
As shown in Fig. 3(a), the flow of an electric current gives
rise to a temperature gradient Tð~rÞ according to the heat
equation

�Cp

dTð ~rÞ
dt

¼ kr2Tð~rÞ þ qð~rÞ; (5)

where �, Cp, k, and qð ~rÞ are the density, specific heat,

thermal conductivity, and heat power density, respectively,

resulting from the flow of the current. Therefore, Tð~rÞ is
determined by qð ~rÞ at a position ~r. Now we suppose, as
shown in Fig. 3(b), that branch segment spots are homoge-
neously distributed in an area s� s in an L� L slice so
that we can approximate qð ~rÞ ¼ const, denoted as q0,
within the region s� s and consider qð ~rÞ ¼ 0 elsewhere.
Here, the four boundaries are maintained at a fixed tem-
perature of Tb ¼ 300 K. We consider L ¼ 101 and a unit
lattice length of 1 nm. Other constituent parameters are
the same as those used in Ref. [13]. In this simulation,
we found the minimum q0 that raises the temperature of the
hottest (central) site of the slice up to Tc, which is the
threshold temperature for on ! off switching, to be a
function of s. As shown in Fig. 3(c), using the FEM, we
found that q0 � s��, with � ¼ 1:65� 0:01, which is in-
dependent of Tc. Since the total heat generated from the
branch segments in the bottleneck slice, n0i

2
Rr, is the same

as the heat produced in the s0 � s0 area, s
2
0q0, we obtain

iR ¼
ffiffiffiffiffiffiffiffiffiffi
s20q0
n0r

s
¼ Is

ð3���DfÞ=2
0 ; (6)

where I is a material-dependent coefficient. From Eqs. (3),
(4), and (6), and since IR � iRn0, we can obtain the scaling
relations listed in Table I.
To validate these theoretical predictions experimentally,

we grew polycrystalline NiOw, SrTiOx, FeOy, and TiOz

thin films (insulating media) on Pt=TiO2=SiO2=Si sub-
strates using dc magnetron reactive sputtering, pulsed laser
deposition, thermal oxidation, and pulsed laser deposition,
respectively. In order to determine the electrical properties,
we evaporated top electrodes of 40-nm-thick Pt. We ap-
plied high voltage to the films to cause a (soft) dielectric
breakdown so that conducting percolating paths could be
created within them. For these films, we obtained the
scaling relations between B3f, R0, and IR. From the analy-

sis of these scaling plots we found two scaling behaviors
and their crossover values B3fðcrossÞ, R0ðcrossÞ, and IRðcrossÞ for
each material. To get rid of material-dependent terms and
confirm the universal exponents, we used normalized
quantities Bx � B3f=B3fðcrossÞ, Rx � R0=R0ðcrossÞ, and Ix �
IR=IRðcrossÞ.
Figure 4(a) shows the experimental plots of Bx against

Rx for the four kinds of films. The scaling relation Bx � R�
x

is observed in each scaling regime, and the scaling
exponents seem to be universal, regardless of the oxide

FIG. 3 (color online). (a) Electric current flowing through
conducting spots (branch segments) in each slice causes Joule
heating, which gives rise to a temperature gradient according to
Eq. (5). When the temperature of the hottest (central) part of the
slice reaches Tc [see Fig. 1(e)], rupturing occurs. (b) In simula-
tions, we used an L� L lattice whose four boundaries were in
contact with a thermal bath at temperature Tb ¼ 300 K. qð~rÞ ¼
q0 (constant) inside the dashed (red) box with sides of length s,
and qð~rÞ ¼ 0 elsewhere. (c) FEM simulation result. We found
q0 � s��, with � � 1:65� 0:01; the exponent is independent of
Tc (400 K, 700 K, and 1000 K).

TABLE I. Exponents �, �, and � for low and high resistance regimes. Here, we use Df ¼ 2:54 and � ¼ 1:65 as the theoretical
values.

B3f � R�
0 IR � R��

0 IR � B
��
3f

�l �h �l �h �l �h

Theoretical formula with thermal effect
3Df�4

Df�2 3
Df��þ1

2ðDf�2Þ
Df��þ1

2ðDf�1Þ
Df��þ1

2ð3Df�4Þ
Df��þ1

6ðDf�1Þ
Theoretical values 6.7 3 1.8 0.61 0.26 0.20

Experimental values 6:7� 0:3 3:1� 0:2 1:8� 0:2 0:7� 0:1 0:24� 0:1 0:24� 0:1
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materials. The exponents for the low and high resistance
regimes are �l ¼ 6:7� 0:3 and �h ¼ 3:1� 0:1, respec-
tively. Experimental plots of Ix against Rx are shown in
Fig. 4(b); this figure also presents material-independent
scaling behaviors corresponding to the relation Ix � R��

x

in each scaling regime. The exponents for the two regimes
are �l ¼ 1:8� 0:2 and �h ¼ 0:7� 0:1. We also obtained
material-independent scaling exponents for the relation
Ix � B

��
x , as shown in Fig. 4(c), where �h � �l ¼ 0:24�

0:1; interestingly, they seem to be practically indistinguish-
able. These experimentally measured exponent values are
in excellent agreement with the theoretical values when we
choose Df ¼ 2:54. Actually, this Df value was chosen to

make the theoretical value match the experimental value of
�l, but is in good agreement with a previous simulation
result in the range 2.32–2.65 [19] for a three-dimensional
diffusion limited aggregation pattern, which is known to
share a common fractal nature with the dielectric break-
down pattern [1].

This study has clarified the physical meaning of the two
scaling regimes. They are separated by the number of bot-
tleneck links of percolating paths, as depicted in Fig. 4(d).
The bottleneck on the percolating paths consists of many
connections with large s0 for low resistance values and
very few connections with small s0 for high resistance

values. The universal behaviors indicate that the topology
of the conducting path is preserved for different materials,
which is of crucial importance not only in scientific re-
search, as a topic of wide interest, but also in engineering;
we can adapt the same technique to devices composed of
different materials.
Finally, we remark that the two scaling regimes are

formed in a self-organized manner during the switching
dynamics, which comprise the dielectric breakdown and
thermal rupture processes. This differs from the formation
mechanism of the two scaling regimes in the conventional
percolation, in which the bottleneck size is comparable to
the correlation length determined from the fraction of
conducting bonds.
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FIG. 4 (color online). (a), (b), and (c) show scaling relations
for Bx vs Rx, Ix vs Rx, and Ix vs Bx, respectively. In each panel,
NiOw, SrTiOx, FeOy, and TiOz are denoted by r, j, m, and +,

respectively. The data for NiOw are obtained from Ref. [13]. The
two scaling regions are distinguished by the x ¼ 100 line. (d) The
two scaling regions originate from different bottleneck sizes s0
of the filaments.
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